Climate model bias correction and the role of timescales
نویسندگان
چکیده
It is well known that output from climate models cannot be used to force hydrological simulations without some form of preprocessing to remove the existing biases. In principle, statistical bias correction methodologies act on model output so the statistical properties of the corrected data match those of the observations. However, the improvements to the statistical properties of the data are limited to the specific timescale of the fluctuations that are considered. For example, a statistical bias correction methodology for mean daily temperature values might be detrimental to monthly statistics. Also, in applying bias corrections derived from present day to scenario simulations, an assumption is made on the stationarity of the bias over the largest timescales. First, we point out several conditions that have to be fulfilled by model data to make the application of a statistical bias correction meaningful. We then examine the effects of mixing fluctuations on different timescales and suggest an alternative statistical methodology, referred to here as a cascade bias correction method, that eliminates, or greatly reduces, the negative effects.
منابع مشابه
A comparative study of quantitative mapping methods for bias correction of ERA5 reanalysis precipitation data
This study evaluates the ability of different quantitative mapping (QM) methods as a bias correction technique for ERA5 reanalysis precipitation data. Climate type and geographical location can affect the performance of the bias correction method due to differences in precipitation characteristics. For this purpose, ERA5 reanalysis precipitation data for the years 1989-2019 for 10 selected syno...
متن کاملPrecipitation bias correction of very high resolution regional climate models
Regional climate models are prone to biases in precipitation that are problematic for use in impact models such as hydrology models. A large number of methods have already been proposed aimed at correcting various moments of the rainfall distribution. They all require that the model produce the same or a higher number of rain days than the observational data sets, which are usually gridded data...
متن کاملOptimization of Reservoir Operation using a Bioinspired Metaheuristic Based on the COVID-19 Propagation Model
Recently, global warming problems with rapid population growth and socio-economic development have intensified the demand for water and increased tensions on water supplies. This research evolves the Multi-Objective Coronavirus Optimization Algorithm (MOCVOA) to obtain operational optimum rules of Voshmgir Dam reservoir under the climate change conditions. The climatic variables downscaled and ...
متن کاملInfluences of increasing temperature on Indian wheat: quantifying limits to predictability
As climate changes, temperatures will play an increasing role in determining crop yield. Both climate model error and lack of constrained physiological thresholds limit the predictability of yield. We used a perturbed-parameter climate model ensemble with two methods of bias-correction as input to a regional-scale wheat simulation model over India to examine future yields. This model configurat...
متن کاملDischarge simulations performed with a hydrological model using bias corrected regional climate model input
Studies have demonstrated that precipitation on Northern Hemisphere mid-latitudes has increased in the last decades and that it is likely that this trend will continue. This will have an influence on discharge of the river Meuse. The use of bias correction methods is important when the effect of precipitation change on river discharge is studied. The objective of this paper is to investigate th...
متن کامل